
Chase Joyner

882 Homework 2

September 28, 2016

Problem 1:

(a) The Jeffrey’s prior distribution is obtained calculating the square root of the determinant of
the fisher information matrix. Namely, for parameters θ, impose the prior distribution

π(θ) ∝
√
|I(θ)|

where I(θ) is the Fisher information matrix and | · | is the determinant function. In a model
with only one parameter, the Fisher information is just a scalar and so |I(θ)| = I(θ). The
Jeffrey’s prior is invariant under reparameterization and therefore a new posterior under a
different parameterization can easily be obtained without repeating the derivations. Another
property of the Jeffrey’s prior, though favorable or not is left for the statistician to decide,
is that it acts as a non-informative prior. This could be beneficial when there is little to no
knowledge of the parameter space. A drawback worth mentioning is that the computation of
Jeffrey’s prior can be tedious, depending on the situation. The complexity of calculating the
Fisher information grows as the dimension of θ gets larger because the Fisher information
matrix is a p×p matrix, where p is the number of parameters. In fact, in some situations the
Jeffrey’s prior in high dimensions can lead to unfavorable results.

(b) Assume Yi
iid∼ Bernoulli(p). Then, the likelihood function is

f(p|Y) = p
∑n

i=1 Yi(1− p)n−
∑n

i=1 Yi .

Taking the log, and denoting Z =
∑n

k=1 Yk, we have the log likelihood function to be

`(p|Y) = log f(p|Y) = Z log p+ (n− Z) log(1− p).

Now we can calculate the Fisher information. Using the fact that ` here is twice differentiable,
we will use the alternate formulation, namely

I(p) = −E
[
∂2

∂p2
`(p|Y)

]
= −E

[
∂

∂p

(
Z

p
− n− Z

1− p

)]
= −E

[
−Z
p2
− n− Z

(1− p)2

]
=

1

p2
E[Z] +

n− E[Z]

(1− p)2
.

Note that Z =
∑n

k=1 Yk ∼ Binomial(n, p), and thus E[Z] = np. Therefore, we see that

I(p) =
np

p2
+

n− np
(1− p)2

=
n

p(1− p)
.
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Finally, the Jeffrey’s prior for this setting is

π(p) ∝
√
|I(p)| ∝ 1√

p(1− p)
= p

1
2
−1(1− p)

1
2
−1.

We see that Jeffrey’s prior here is Beta(1/2, 1/2). Now we can formulate the posterior distri-
bution for p. Notice that

π(p|Y) ∝ π(Y|p)π(p)

∝ p
∑n

k=1 Yk(1− p)n−
∑n

k=1 Yk · p
1
2
−1(1− p)

1
2
−1

= p
∑n

k=1 Yk+
1
2
−1(1− p)n−

∑n
k=1 Yk+

1
2
−1.

Then, we see that imposing a Jeffrey’s prior results in a Beta posterior, that is
we have p|Y ∼ Beta

(
nY + 1/2, n− nY + 1/2

)
. Since the posterior distribution is a known

distribution, to conduct posterior inference we can report any point estimates we want to,
such as the posterior mean of p, the posterior mode of p, etc.. Also, we can calculate posterior
(1− α)% quantiles very easily or use HPD intervals.

(c) Now we assume our data follows a Poisson model, i.e. Yi
iid∼ Poisson(λ). The log likelihood

function is then

`(λ|Y) =

n∑
k=1

Yk log λ− nλ+

n∑
k=1

log(Yk!).

Setting Z =
∑n

k=1 Yk, we can calculate the Fisher information as

I(λ) = −E
[
∂2

∂p2
`(λ|Y)

]
= −E

[
Z

λ
− λ

]
= −E

[
− Z
λ2

]
=

1

λ2
E[Z].

Notice that Z =
∑n

k=1 Yk ∼ Poisson(nλ) and hence E[Z] = nλ. Then,

I(λ) =
1

λ
nλ =

n

λ
.

Finally, the Jeffrey’s prior in this situation is

π(λ) ∝
√
|I(λ)| ∝ 1√

λ
.

The posterior distribution is then

π(λ|Y) ∝ λ
∑n

k=1 Yke−nλ · 1√
λ

= λ
∑n

k=1 Yk+
1
2
−1e−nλ.

We see that the posterior distribution is λ|Y ∼ Gamma(
∑n

k=1 Yk + 1/2, n). Here, we again
can recognize the posterior distribution and so posterior inference is easy. We can report
posterior point estimates by calculating the mean, median, mode, etc. of the posterior distri-
bution as well as quantiles.
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(d) For the last situation, assume Yi
iid∼ Exp(β). The log likelihood function is

`(β|Y) = n log β − β
n∑
k=1

Yk.

Setting Z =
∑n

k=1 Yk, the Fisher information is

I(β) = −E
[
∂2

∂p2
`(β|Y)

]
= −E

[
n

β
− Z

]
= −E

[
− n

β2

]
=

n

β2
.

Therefore, the Jeffrey’s prior distribution becomes

π(β) ∝
√
|I(β)| ∝ 1

β
.

The posterior distribution is then

π(β|Y) ∝ βne−β
∑n

k=1 Yk · 1

β
= βn−1e−β

∑n
k=1 Yk ,

which implies the posterior distribution is β|Y ∼ Gamma(n, nY ). Since we recognize the
posterior distribtion as a Gamma, we can easily report posterior point estimates as the mean,
median, mode, etc. of the posterior distribution. Also, quantiles and HPD intervals can be
computed in the normal fashion.

Problem 2:

(a) The distribution of Y = X1 +X2 is N(µ1 + µ2, σ
2
1 + σ22).

(b) Assume X1 ∼ N(3, 0.8) and X2 ∼ N(−2.7, 0.23). We sample 10, 000 values each for X1 and
X2 and compute Y = X1 + X2, i.e. we obtain 10, 000 samples of Y . The histogram below
shows the probability of an outcome of Y based on the sample. We have also over-plotted
a black kernel density estimate based on the outcomes of Y , as well as a red hyphened line
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which is the true density of Y .

Here we can see that the kernel density estimate, i.e. plotting Y = X1 + X2, is almost
indistinguishable from the true density of Y , i.e. N(2.3, 1.03). Furthermore, the mean of Y
was 2.303 and the variance of Y was 1.032. Both of these point estimates are very close to
the true mean of 2.3 and true variance 1.03.

(c) To obtain the distribution of Y = X1 +X2, we can perform convolution. For y ∈ R,

P (Y ≤ y) = P (X1 +X2 ≤ y) =

∫ ∞
−∞

P (X1 + x ≤ y|X1 = x)fX2(x)dx

=

∫ ∞
−∞

P (X1 ≤ y − x)fX2(x)dx =

∫ ∞
−∞

FX1(y − x)fX2(x)dx

where FX1 denotes the CDF of X1 and fX2 denotes the PDF of X2. Differentiating both sides
will result in the PDF of Y , which is

fY (y) =
∂

∂y

∫ ∞
−∞

FX1(y − x)fX2(x)dx =

∫ ∞
−∞

fX1(y − x)fX2(x)dx.

However, this integral is intractable in this case, and so we turn to Monte Carlo techniques.
Notice that this integral can be thought of as an expected value, i.e.

fY (y) =

∫ ∞
−∞

fX1(y − x)fX2(x)dx = EX2

[
fX1(y − x)

]
and so by the law of large numbers,

fY (y) ≈ 1

N

N∑
k=1

fX1(y − xk)
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where x1, ..., xk are samples from fX2 . By Monte Carlo simulations, we obtain the graph in
part (b) over-plotted with a blue line:

Here we can see that the convolution technique seemed to approximate the true density very
well, in fact the two lines are almost indistinguishable in this situation.

(d) Now that we see these techniques appear to estimate the sum of random variables pretty
well, consider X1 ∼ Gamma(α1, β1) and X2 ∼ Gamma(α2, β2). We are interested in the
distribution of Y = X1 +X2. Since β1 can differ from β2, the distribution fY can be difficult
to obtain analytically. So, we turn to Monte Carlo techniques. To illustrate, assume X1 ∼
Gamma(2.3, 3) and X2 ∼ Gamma(2.8, 2.2). We perform the same techniques as in parts (b)
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and (c) of this problem. The results can be seen below:

Again, the technique in part (b) is the black line, which is hidden under the blue line that
represents the technique in part (c). For both, though, we see that the estimations appear to
approximate the realizations of Y very well.

Problem 3:

(a) The game of craps is played in the following way. A player will roll two dice. If the sum of
the two dice is a 2, 3, or 12, the player loses the game. However, if the sum of the dice is a
7 or 11, then the player wins. If the sum of the dice is none of these values, then the value
rolled is the players ’point’. Now the player repeatedly rolls the dice until he rolls his point
or a 7. If the point is rolled again before a 7, then the player wins; otherwise he loses.

(b) Your initial bet will be 10 dollars. The return on any bet will be the amount that you bet,
i.e. if you bet 10 dollars and win, then you win 10 dollars. You are going to play exactly
10 games of craps. If you lose on the previous game, your next bet requires you to ”double
down”, that is, if on one game you bet X dollars and lose, on the next game you have to be
2X dollars. If you win on the previous game, your next bet will be 10 dollars.

(c) Using Monte Carlo simulation, we simulated 100, 000 outcomes of earnings after playing 10
games of craps with the strategy in part (b). The results came back of about negative $5 of
expected earnings. Therefore, we conclude that this does not seem to be a profitable betting
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strategy. The empirical distribution of earnings based on the 100, 000 data points is

Althought it appears that most of the time we are profitable, notice that sometimes we lose a
lot of money. The maximum earnings is $100, but we see that we can also lose up to $10, 230.
Not a good idea in my opinion!

Problem 4:

(a) The parameter space for p = (p1, p2, p3, p4), the probability vector of the die that was rolled is

Θ =




1/3
1/3
1/6
1/6

 ,


1/6
1/3
1/3
1/6

 ,


1/6
1/6
1/6
1/2


 = {pA,pB,pC}.

(b) We first must calculate values of L(·|X) for the different possible dice rolled, where X is the
outcomes observed. Notice,

L(A|X) =

(
29

5

)(
1

3

)5(24

11

)(
1

3

)11(13

6

)(
1

6

)6(7

7

)(
1

6

)7

= 9.05 · 10−4

L(B|X) =

(
29

5

)(
1

6

)5(24

11

)(
1

3

)11(13

6

)(
1

3

)6(7

7

)(
1

6

)7

= 1.81 · 10−3

L(C|X) =

(
29

5

)(
1

6

)5(24

11

)(
1

6

)11(13

6

)(
1

6

)6(7

7

)(
1

2

)7

= 3.02 · 10−5.

Taking the maximum, we conclude that p̂MLE = pB = (1/6, 1/3, 1/3, 1/6).
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(c) To create a size α test of H0 : p = pC versus H1 : p 6= pC , we considered a likelihood ratio
test, i.e. our test statistic is

Λ =
L(C|X)

L(p̂MLE |X)
,

with the decision rule of I(Λ < cα), i.e. reject H0 if Λ < cα and fail to reject H0 if Λ ≥ cα,
where cα is chosen such that P (Λ < cα) = α. Rather than trying to compute the proper cα,
we turn to Monte Carlo. We simulate 10, 000 possible outcomes of 29 rolls under dice C and
recompute the MLE to obtain a sample Λ(s), for s = 1, ..., 10000. Then, we calculate what
proportion of these fall less than Λ, which was 0.0024. Comparing this p-value to α, we reject
if 0.0024 < α. This appears that we reject H0 under any reasonable choice of α.
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APPENDIX

##########################################
##########################################
##########################################
#####
##### Chase Joyner
##### 882 Homework 2
##### September 28 , 2016
#####
##########################################
##########################################
##########################################

##########################
##### Problem 2 Code #####

## Part b ##
mu1 = 5
mu2 = −2.7
sigma1sq = 0 .8
sigma2sq = 0.23
n1 = n2 = 10000
X1 = rnorm ( n1 , mu1 , s q r t ( sigma1sq ) )
X2 = rnorm ( n2 , mu2 , s q r t ( sigma2sq ) )
Y = X1 + X2
h i s t (Y, prob = TRUE, xlab = ”Y” , ylab = ”p(Y)”)
l i n e s ( dens i ty (Y) , lwd = 2)
sigmasq = sigma1sq + sigma2sq
mu = mu1 + mu2
tmp = seq (−2 , 6 , by = 0 .001 )
ptmp = 1 / s q r t (2∗ pi ∗ sigmasq ) ∗ exp (−1/(2∗ sigmasq )∗ ( tmp − mu)ˆ2)
l i n e s (tmp , ptmp , c o l = 2 , l t y = 2 , lwd = 2)
mean(Y)
var (Y)

## Part c ##
mu1 = 5
mu2 = −2.7
sigma1sq = 0 .8
sigma2sq = 0.23
y = seq (−2 , 6 , by = 0 .001 )
N = length ( y )
dY = rep (−99 , N)
f o r ( i in 1 :N){
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X2 . samp = rnorm (N, mu2 , s q r t ( sigma2sq ) )
dY[ i ] = mean(dnorm( y [ i ]−X2 . samp , mu1 , s q r t ( sigma1sq ) ) )

}
l i n e s (y , dY, c o l = ” blue ” , l t y = 5)

## Part d ##
alpha1 = 2 .3
beta1 = 3
alpha2 = 2 .8
beta2 = 2 .2
n1 = n2 = 10000
X1 = rgamma( n1 , alpha1 , beta1 )
X2 = rgamma( n2 , alpha2 , beta2 )
Y = X1 + X2
h i s t (Y, prob = TRUE, xlab = ”Y” , ylab = ”p(Y)” , yl im = c ( 0 , 0 . 6 ) )
l i n e s ( dens i ty (Y) , lwd = 2)
y = seq (0 , 5 , by = 0 .001 )
N = length ( y )
dY = rep (−99 , N)
f o r ( i in 1 :N){

X2 . samp = rgamma(N, alpha2 , beta2 )
dY[ i ] = mean(dgamma( y [ i ]−X2 . samp , alpha1 , beta1 ) )

}
l i n e s (y , dY, c o l = ” blue ” , l t y = 2)

x1 = rgamma(10000 , alpha1 , beta1 )
x2 = rgamma(10000 , alpha2 , beta2 )

h i s t ( x1 , prob = TRUE)
windows ( )
h i s t ( x2 , probe = TRUE)

##########################
##### Problem 3 Code #####

## Part c ##
playcraps = func t i on ( ){

num = append ( 1 : 6 , 5 : 1 )
f i r s t . r o l l = sample ( 2 : 1 2 , 1 , prob = num / 36)
i f ( f i r s t . r o l l %in% c (2 , 3 , 12 ) ){

re turn (0 )
} e l s e i f ( f i r s t . r o l l %in% c (7 , 11 ) ){

re turn (1 )
} e l s e {
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po int = f i r s t . r o l l
next . r o l l = sample ( 2 : 1 2 , 1 , prob = num / 36)
whi l e ( next . r o l l != po int && next . r o l l != 7){

next . r o l l = sample ( 2 : 1 2 , 1 , prob = num / 36)
}
i f ( next . r o l l == point ){

re turn (1 )
}
re turn (0 )

}
}

n = 10000
r e s = rep (−99 , n)
f o r ( i in 1 : n){

r e s [ i ] = p laycraps ( )
}
mean( r e s ) # Should be around 49%. Checks out .

s ims = 1000000 # Number o f t imes s imulated
n = 10 # Number o f games to play
i . bet = 10 # I n i t i a l bet o f 10 d o l l a r s
ea rn ings = rep (0 , s ims )

f o r ( t in 1 : s ims ){
bet = i . bet
tmp = 0
f o r ( i in 1 : n){

r e s = playcraps ( )
i f ( r e s == 0){

tmp = tmp − bet
bet = 2∗ bet

}
i f ( r e s == 1){

tmp = tmp + bet
bet = i . bet

}
}
pr in t ( t )
ea rn ings [ t ] = tmp

}
mean( ea rn ings )
h i s t ( ea rn ings )
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##########################
##### Problem 4 Code #####

## Part c ##
e lk = func t i on (x , p){

va l = choose (29 , x [ 1 ] ) ∗ p [ 1 ] ˆ x [ 1 ] ∗ choose (29−x [ 1 ] , x [ 2 ] ) ∗ p [ 2 ] ˆ x [ 2 ]
∗ choose (29−x [1]−x [ 2 ] , x [ 3 ] ) ∗ p [ 3 ] ˆ x [ 3 ] ∗ p [ 4 ] ˆ x [ 4 ]

r e turn ( va l )
}

X = c (5 , 11 , 6 , 7 )
LpA = e lk (X, c (1/3 ,1/3 ,1/6 ,1/6) )
LpB = e lk (X, c (1/6 ,1/3 ,1/3 ,1/6) )
LpC = e lk (X, c (1/6 ,1/6 ,1/6 ,1/2) )

t e s t . s t a t = LpC / max(LpA, LpB, LpC)

sims = 10000
s t a t s = rep (−99 , sims )
pA = c (1/3 ,1/3 ,1/6 ,1/6)
pB = c (1/6 ,1/3 ,1/3 ,1/6)
pC = c (1/6 ,1/6 ,1/6 ,1/2)
f o r ( i in 1 : s ims ){

r o l l s = sample ( 1 : 4 , 29 , r e p l a c e = TRUE, prob = pC)
ones = length ( which ( r o l l s == 1))
twos = length ( which ( r o l l s == 2))
t h r e e s = length ( which ( r o l l s == 3))
f o u r s = length ( which ( r o l l s == 4))
X = c ( ones , twos , threes , f o u r s )
mle = max( e l k (X,pA) , e l k (X, pB) , e l k (X,pC) )
s t a t s [ i ] = e l k (X,pC) / mle

}
mean( s t a t s <= t e s t . s t a t )
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